Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Min Hong, Handong Yin,* Daqi Wang and Gang Li

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail:
handongyin@Ictu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.030$
$w R$ factor $=0.083$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(3-chlorobenzyl)tin(IV) ester of pyruvic acid 4-hydroxybenzoylhydrazone

The Sn atom in the title complex, bis[μ-pyruvic acid 4-hydroxybenzoylhydrazonato(2-)]bis[bis(3-chlorobenzyl)ethanoltin(IV)], $\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right]$, is six-coordinate with a distorted octahedral geometry, three O atoms and one N atom forming the equatorial plane. Through additional weak $\mathrm{Sn}-\mathrm{O}$ bonding and hydrogen bonds, two molecules form a dimer, which has crystallographic $\overline{1}$ symmetry. These discrete dimers are connected by hydrogen-bonding interactions into a three-dimensional supramolecular network.

Comment

In the title complex, (I), the Sn atom exists in a distorted octahedral coordination environment in which one ethanol molecule, one tridentate pyruvic acid 4-hydroxybenzoylhydrazone ligand, and two trans 3-chlorobenzyl groups coordinate to each Sn center. Atoms O1, O3, N1 and O5, which form the equatorial plane, are coplanar within $0.0917 \AA$ and the axial angle $\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{C} 18\left[160.40(14)^{\circ}\right]$ deviates from the linear value of 180°, indicating that the Sn atom has a distorted octahedral configuration. Atom O1 of the carboxylate residue also binds more weakly to the other Sn atom, Sn^{i}, generating an $\mathrm{Sn}_{2} \mathrm{O}_{2}$ four-membered ring [symmetry code: (i) $-x,-y,-z$]. The $\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}$ distance of $2.764 \AA$ is longer than $\mathrm{Sn} 1-\mathrm{O} 1$ [2.357 (2) \AA] , but comparable with the values found in related seven-coordinate diorganotin systems (Gielen et al., 1998; Yin et al., 2003).

(I)

The structure of the title complex can be described as a dimer, formed through weak $\mathrm{Sn}-\mathrm{O}$ bonding interactions, with crystallographically imposed $\overline{1}$ symmetry, and the coordination geometry of tin can be also described as a trans $-\mathrm{C}_{2} \mathrm{SnO}_{4} \mathrm{~N}$ pentagonal bipyramid with the two 3-chlorobenzyl groups occupying trans positions [C11-Sn1-C18 = $\left.160.40(14)^{\circ}\right]$. The formation of the dimer leads to a short distance between O and O^{i}, which does not represent a direct bond.

Figure 1
The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. Unlabeled atoms are related by the symmetry code ($-x,-y$, $-z$.

Figure 2
A packing diagram, showing the three-dimensional structure of the title complex formed via hydrogen-bonding (dashed lines) interactions.

The C4-O3 bond length [1.293 (4) Å] lies between double$(1.224 \AA)$ and single-bond $(1.430 \AA)$ lengths. Compared with the length of a $\mathrm{C}=\mathrm{N}$ double bond $(1.270 \AA$) and a $\mathrm{C}-\mathrm{N}$ single bond ($1.470 \AA$), both the $\mathrm{C} 4-\mathrm{N} 2[1.333(4) \AA]$ and $\mathrm{C} 2-\mathrm{N} 1$ [1.293 (4) \AA] bonds should be classified as $\mathrm{C}=\mathrm{N}$ double bonds. The $\mathrm{N} 1-\mathrm{N} 2$ bond [1.368 (3) \AA] falls within the normal range of $\mathrm{N}-\mathrm{N}$ single bonds (Yang et al., 1999; He et al., 2002). These data indicate that the Schiff base ligand forms a $\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}$ conjugated system, which is introduced into the inner coordination sphere and functions as a tridentate chelate with the O, N and O atoms in the deprotonated enol form. In this molecule, the phenol O atoms do not participate in the coordination to the Sn atoms.

Each Sn atom is also coordinated by an ethanol molecule, the $\mathrm{Sn}-\mathrm{O}$ bond distance being 2.424 (3) \AA, which is longer than those in analogous compounds (Yin et al., 2003; Gielen et al., 1998) due to the formation of intradimer hydrogen bonds $\left[\mathrm{O} 2 \cdots \mathrm{O} 5^{\mathrm{i}}\right.$ (or $\mathrm{O} 2^{\mathrm{i}} \cdots \mathrm{O} 5$) of 2.696 (4) \AA A . Neighboring molecules are held together by interdimer $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [O4 $\cdots \mathrm{O} 2^{\mathrm{ii}}=2.577 \AA$ A symmetry code: (ii) $x-\frac{1}{2},-y+\frac{1}{2}$, $\left.z+\frac{1}{2}\right]$. These hydrogen bonds contribute to the crystal stability and compactness and result in a three-dimensional dimeric supramolecular network arrangement (Fig. 2).

Experimental

Pyruvic acid 4-hydroxybenzhydrazone (1 mmol) and sodium ethoxide (1 mmol) were added to dry benzene (20 ml) in a Schlenk flask and stirred for 0.5 h . Bis(3-chlorobenzyl)tin dichloride (1 mmol) was then added and the reaction mixture was stirred for 12 h at 313 K and then filtered. The solvent was gradually removed by evaporation under vacuum until a solid product was obtained. The solid was then recrystallized from ethanol and light-yellow crystals suitable for X-ray diffraction were obtained (m.p. 472 K). Elemental analysis calculated for $\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Sn}_{2}$: C 48.84, H $3.39, \mathrm{~N} 4.75 \%$; found: C 49.02, H 3.31, N 4.67%.

Crystal data

$\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Sn}_{2}$
$D_{x}=1.566 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1272.16$
Monoclinic, $P 2_{\mathrm{d}} / n$
Mo $K \alpha$ radiation
Cell parameters from 6599
$a=11.887$ (2) A
reflections
$b=11.775$ (2) \AA
$\theta=2.4-28.0^{\circ}$
$c=19.293$ (3) \AA
$\mu=1.18 \mathrm{~mm}^{-1}$
$\beta=92.171$ (2) ${ }^{\circ}$
$V=2698.4(8) \AA^{3}$
$T=298$ (2) K
$Z=2$
Block, light yellow
$0.48 \times 0.43 \times 0.27 \mathrm{~mm}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.601, T_{\text {max }}=0.741$
4753 independent reflections
3808 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-14 \rightarrow 7$
$k=-13 \rightarrow 14$
13866 measured reflections
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$

$$
\begin{aligned}
& w=1 /[{\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0403 P)^{2}\right.} \\
&\quad+2.5821 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.81 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}
\end{aligned}
$$

$S=1.01$
4753 reflections
329 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Sn1-O3	$2.137(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.293(4)$
$\mathrm{Sn} 1-\mathrm{N} 1$	$2.228(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.368(3)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.357(2)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.333(4)$
$\mathrm{Sn} 1-\mathrm{O} 5$	$2.424(3)$	$\mathrm{O} 3-\mathrm{C} 4$	$1.293(4)$
$\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.764(2)$		
$\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{C} 11$	$93.70(11)$	$\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{O} 1$	$140.44(8)$
$\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{C} 18$	$160.40(14)$	$\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{O} 1$	$90.32(11)$
$\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{N} 1$	$71.17(9)$	$\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{O} 1$	$69.67(8)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{N} 1$	$94.47(13)$	$\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{O} 5$	$77.14(9)$

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.82	1.97	$2.767(4)$	165
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots 2^{\mathrm{i}}$	$0.77(5)$	$2.00(5)$	$2.696(4)$	$151(5)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$.
H atoms attached to C atoms were positioned geometrically and treated as riding on their parent atoms, with aromatic $\mathrm{C}-\mathrm{H}$ distances

metal-organic papers

of $0.93 \AA$, methylene $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$ and methyl $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and at $1.2 U_{\text {eq }}(\mathrm{C})$ for the other C -bound H atoms. The fixed $\mathrm{O}-\mathrm{H}$ distance was $\mathrm{O} 4-\mathrm{H} 4=0.82 \AA$. The coordinates of the H atom bonded to atom O5 were refined freely

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key

Laboratory of Crystal Materials, Shandong University, People's Republic of China.

References

Gielen, M., Dalil, H., Ghys, L., Boduszek, B., Tiekink, E. R. T., Martins, J. C., Biesemans, M. \& Willem, R. (1998). Organometallics. 17, 4259-4263.
He, S. Y., Cao, W. K., Chen. J. L., Zhao, J. S., Shi, Q. Z., Wang, R. X. \& Sun, J. (2002). Chem. J. Chin. Univ. 23, 991-995.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yang, Z. Y., Yang, R. D. \& Yu, K. B. (1999). Chin. Acta Chim. Sin. 57, 236-243.
Yin, H. D., Wang, C. H., Wang, Y., Ma, C. L. \& Shao, J. X. (2003). Chem. J. Chin. Univ. 24, 68-72.

